

IRF1324S-7PPbF

HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

G S

V _{DSS}		24V
R _{DS(on)}	typ.	0.8 m Ω
	max.	1.0m $Ω$
I _D		429A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	429①	Α
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	303 ①	
I _{DM}	Pulsed Drain Current ②	1640	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
dv/dt Peak Diode Recovery ④		1.6	V/ns
T_J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		
Mounting torque, 6-32 or M3 screw		10lb·in (1.1N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy 3	230	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b,	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$	Junction-to-Case ®		0.50	°C/W	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) , D ² Pak ® ®		40		

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	24			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	ΔT _J Breakdown Voltage Temp. Coefficient		0.023		V/°C	Reference to 25°C, I _D = 5mA@
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.80	1.0	mΩ	$V_{GS} = 10V, I_D = 160A$ §
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 24V$, $V_{GS} = 0V$
				250		$V_{DS} = 19V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
R_G	Internal Gate Resistance		3.0		Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	270			S	$V_{DS} = 50V, I_D = 160A$
Q_g	Total Gate Charge		180	252	nC	$I_D = 75A$
Q_{gs}	Gate-to-Source Charge		47			$V_{DS} = 12V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		58			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		122			$I_D = 75A, V_{DS} = 0V, V_{GS} = 10V $ §
t _{d(on)}	Turn-On Delay Time		19		ns	$V_{DD} = 16V$
t _r	Rise Time		240			$I_D = 160A$
t _{d(off)}	Turn-Off Delay Time		86			$R_G = 2.7\Omega$
t _f	Fall Time		93			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		7700		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		3380		1	$V_{DS} = 19V$
C _{rss}	Reverse Transfer Capacitance		1930			f = 1.0MHz, See Fig.5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		4780			$V_{GS} = 0V$, $V_{DS} = 0V$ to 19V \bigcirc , See Fig.11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		4970			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 19V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	_	_	429①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			1636	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 160A$, $V_{GS} = 0V$ $\$$
t _{rr}	Reverse Recovery Time		71	107	ns	$T_J = 25^{\circ}C$ $V_R = 20V$,
			74	110		$T_J = 125^{\circ}C$ $I_F = 160A$
Q_{rr}	Reverse Recovery Charge		83	120	nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot
			92	140		$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		2.0		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)		igible (turn-on is dominated by LS+LD)		

Notes:

- ① Calculated continuous current based on maximum allowable junction ⑥ Coss eff. (TR) is a fixed capacitance that gives the same charging time temperature. Package limitation current is 160A.
- 2 Repetitive rating; pulse width limited by max. junction temperature.
- R_G = 25 $\!\Omega,\,I_{AS}$ = 160A, V_{GS} =10V. Part not recommended for use above this value.
- $\textcircled{4} \ I_{SD} \leq 160 A, \ di/dt \leq 600 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- ⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.

- as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.
- [®] R_θ is measured at T_J approximately 90°C

D²Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

RECOMMENDED FOOTPRINT

REV	DATE	MODIFICATION
-	18/03/03 RAISED IAW ECN 3426	
Rev1	07/04/03	CHANGED IAW ECN 3438
А	23/04/04	ADD LEAD ASSIGNMENT

D²Pak - 7 Pin Part Marking Information

EXAMPLE: THIS IS AN IRF2804S-7P WITH LOT CODE 8024
ASSEMBLED ON WW02,2000

IN THE ASSEMBLY LINE "L'

Note: "P" in assembly line position indicates "Lead Free"

OR

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER; IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

